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Abstract

Seismic imaging of the subsurface is normally made
through (single-scattering) conventional techniques that
treat the internal multiple reflections as noise. Recently,
strategies to remove these migrated false events have
been developed. Technologies such as source-receiver
Marchenko redatuming with adaptive double-focusing
method (DFM) and Marchenko multiple elimination by
least-squares (LSMME) have been shown as very efficient
methods to solve this problem. Both methods are based
on the Marchenko equations and they can be used as
a preprocessing step to generate seismic images without
artifacts related to internal multiple events. In this work,
we compare these methods and evaluate their success
with numerical examples. Then, we demonstrate the
robustness of the LSMME scheme removing internal
multiples, when compared with DFM, albeit at a higher
computational cost.

Introduction

Seismic processing steps such as velocity analysis and
standard imaging in time and depth (Kirchhoff, RTM,
etc) present limitations when there are internal multiples.
The multiples are created when waves reflect more than
once in the subsurface before reaching the receivers.
However, standard imaging methods such as reverse-
time migration (RTM) or Kirchhoff time/depth migration,
rely on the single-scattering assumption, i.e., recorded
seismic data does not include multiples. Though these
events have lower energy than the primary reflections, the
single-scattering assumption can lead to the generation of
strong artifacts in the seismic images. Some techniques
have been proposed to mitigate the artifacts related to the
internal multiples, whose traditional workflow consists of
predicting the internal multiples and subtracting them from
the acquired seismic data. However, with the recent use of
the Marchenko equations, several alternatives have been
presented for the treatment of this kind of information.

van der Neut and Wapenaar (2016) proposed a new
method rewriting the coupled Marchenko equations. This
scheme requires only a smooth velocity model to create
time truncations. Zhang and Staring (2018) modified
the scheme of van der Neut and Wapenaar (2016) and

obtained the method called Marchenko multiple elimination
(MME), which is a data-driven algorithm. Later, Zhang
et al. (2019) used the work of Zhang and Staring (2018)
to derive a scheme that eliminates internal multiple
reflections and applies compensation for transmission
losses contained in primary reflections. These results
suggest that the MME scheme may be the best alternative
to eliminate internal multiples when the seismic data
has previously gone through a high-quality pre-processing
stage, i.e., deghosting, removal of free-surface multiples
and deconvolution with an estimated source wavelet.
Zhang and Slob (2020b) have used a laboratory dataset
to evaluate the performance of the MME, obtaining a
dataset free of internal multiple reflections. Zhang and
Slob (2019a) presented the first example of applying the
MME on a field dataset from the Norwegian North Sea,
which validated the capabilities of the MME scheme and
showed that it can effectively eliminate internal multiples
without model information or adaptive subtraction. Zhang
and Slob (2020a) developed a fast implementation version
that reduces the computational cost of the proposed
scheme by one order of magnitude. Later, Santos et al.
(2020b) showed that because the MME method is data-
driven, it is possible to apply it in early seismic processing
workflows and calculate NMO velocity fields by semblance
picking free from the effects of internal multiples. This
study demonstrates that internal multiple reflections have
influence on the velocity analysis at early processing
stages and that MME can be seen as a new tool in the
conventional pre-processing workflows of seismic data.
In the same year, Santos et al. (2020a) have proposed
to formulate the application of the MME technique as
a least-squares problem named of Marchenko multiples
elimination by least-squares (LSMME) to avoid the stability
issue related to the Neumann series expansion presented
in the original formulation proposed by Zhang and Staring
(2018).

Staring et al. (2018) developed an adaptive double-
focusing method (DFM) to remove the internal multiples
caused by an overburden using source-receiver
Marchenko redatuming. This method has the advantage to
be more efficient in computational terms when compared
with the multidimensional deconvolution (MDD) (van der
Neut et al., 2011). To ensure the correct and complete
removal of the internal multiples by their counter events is
used an adaptive filter. This adds extra robustness to the
method since the adaptive subtraction might be capable of
correcting for the amplitudes mismatch. Additionally, the
method of Staring et al. (2018) is less sensitive to data
imperfections and sparse acquisition geometry, being an
alternative method for source-receiver redatuming. On the
other hand, it considers the physical medium above the
redatuming level which leads to the remaining of some
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interactions with the overburden. Staring et al. (2018) show
the success of the DFM using 2D synthetic data from the
Santos basin offshore Brazil. Later, Staring and Wapenaar
(2020) extended their work to three-dimensional data.

As shown by Staring et al. (2018), knowing the depth
of the reservoir, it is possible to carry out a redatuming
with the DFM for a region a little above it, thus allowing
to obtain an image of the reservoir free of many of the
multiple generated by layers above at a relatively low-cost.
On the other hand, as shown in Santos et al. (2020a),
the use of LSMME allows to obtain a multiples-free image
of all orders and from all structures in the medium, but
paying a much higher computational cost than the DFM.
As in Wapenaar et al. (2021), which have discussed the
different approaches to Marchenko redatuming, imaging
and multiple elimination, using a common mathematical
framework, in this paper, we compare the DFM with
LSMME in the context of improving the image of a target
region. The comparison covers the theory and the
performance in a numerical example, where we show the
advantages and disadvantages of both schemes and their
influences on the migrated image.

Theory

The LSMME scheme

We follow Santos et al. (2020a) to give a brief overview
of LSMME scheme in this section. To clarify our notation,
the spatial coordinates are defined by their horizontal and
depth components, for instance, xi = (xH ,zi), where xH
are the horizontal coordinates and zi is the depth of an
arbitrary boundary ∂Di, such that the surface acquisition
∂D0 will be defined by x0 = (xH ,z0). The acoustic impulse
reflection response from a source at x0 (recorded by a
pressure receiver at x′0) is denoted as R(x′0,x0, t), where
t is the propagation time. To represent the reflection
response, we use R(x′0,x0, t). In practice, R is obtained from
deconvolution of R with the source time signature. The
projected version of the revised Marchenko equations for
the single-sided reflection response can be given by the
following expressions (Zhang and Staring, 2018; Santos
et al., 2020a):{

v+m(x
′
0,x
′′
0 , t) =

(
Θ

t2−ε
ε R∗v−

)
(x′0,x

′′
0 , t),

v−(x′0,x
′′
0 , t) =

(
Θ

t2−ε
ε Rδ +Θ

t2−ε
ε Rv+m

)
(x′0,x

′′
0 , t),

(1)

U−(x′′0 ,x
′
0, t) =

(
Θ

∞
t2−ε Rδ +Θ

∞
t2−ε Rv+m

)
(x′′0 ,x

′
0, t), (2)

where U− are the projected versions of the upgoing
Green function, and similarly, v+m and v− from the focusing
function. v± are also named by the down and upgoing filter
functions, t2 is the two-way traveltime of the acquisition
surface ∂D0 and a fictitious reflector at horizon ∂Di. The
Θ

t2−ε
ε is a truncation operator to exclude values outside

of the window (ε, t − ε), where ε is a positive value to
account for the finite bandwidth. The operators R and R∗
are defined as:

{RP}(x′′,x′, t) =
∫

∂D
dx
∫ +∞

−∞

R(x′,x, t ′)P(x,x′′, t− t ′)dt ′, (3)

{R∗P}(x′′,x′, t) =
∫

∂D
dx
∫ +∞

−∞

R(x′,x,−t ′)P(x,x′′, t− t ′)dt ′.

(4)

Zhang and Slob (2019b) have shown that U−(x′′0 ,x
′
0, t) can

be evaluated for each time instant t2 in Equation 2. Then,
if U−(x′′0 ,x

′
0, t) is convolved with the source wavelet, their

value to t2 can be collected to be stored in a new function
Rt , containing only primary reflections:

Rt(x′′0 ,x
′
0, t = t2) =U−(x′′0 ,x

′
0, t2). (5)

The hat indicates that quantities have been convolved with
the source wavelet. To evaluate U− it is first necessary
to obtain v+m . Santos et al. (2020a) shows that v+m can
be obtained if the Equation (1) is seen as an inverse
problem, which can be solved using the least-squares
scheme. So, starting with the affirmation presented in
van der Neut and Wapenaar (2016), where is defined that
{Rδ}(x′′0 ,x′0, t) = R(x′′0 ,x

′
0, t), we can rewrite these equations

(1) in the following matricial form:[
v−

v+m

]
=

[
ΘR+ΘRv+m
ΘR∗v−

]
. (6)

Remembering that the least-squares method (LS) consists
of obtaining an approximate solution (x) to the problem in
the form Ax= y by minimizing the sum of the squares of the
residuals. After some algebraic manipulations in Equation
(6), we can write:[

I −ΘR

−ΘR∗ I

]
︸ ︷︷ ︸

A

[
v−

v+m

]
︸ ︷︷ ︸

x

=

[
ΘR

0

]
︸ ︷︷ ︸

y

. (7)

By solving the system (7) with LS allows us to obtain
v+m , which is necessary to compute U−, we have the
Marchenko multiple elimination schemes (see Equation
(5)). To solve the linear system (7) we have applied the
iterative method of Paige and Saunders (1982), which is
based on a stable process. In this method, the elements of
A are applied as operators, so it is not necessary to build
the referred matrix. The solution of Marchenko multiple
elimination based on least-squares is referred as LSMME.

The Adaptive Double-Focusing method

The adaptive double-focusing method, developed by
Staring et al. (2018) is a source-receiver Marchenko
redatuming based on two focusing steps: the obtaining of
the downgoing focusing functions f+(x0,x′i, t) that focus in
a virtual source position in-depth, and the obtaining of the
upgoing Green’s function G−(x′i,x0, t) in the position of a
virtual receiver. The fundamental equation is based on the
following multidimensional convolution:

G−+(xi,x′i, t) =
∫

∂D0

G−(xi,x0, t)∗ f+(x0,x′i, t)d
2x0, (8)

where G−+ is the upgoing wavefield measured by a virtual
receivers at xi due to a virtual receiver at x′i. This method
creates virtual sources that propagate downward at the
redatuming level and virtual receivers that register the
upgoing wavefields (Staring et al., 2018). We obtain the
wavefields G− and f+ in Equation (8) by the following
series:

G−(xi,x0, t)=
∞

∑
i=0

G−i (xi,x0, t)=Ψ(xi,x0, t)R
∞

∑
i=0

Ω
i f+0 (x0,xi, t),

(9)
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and

f+(x0,x′i, t) =
∞

∑
j=0

f+j (x0,x′i, t) =
∞

∑
j=0

Ω
j f+0 (x0,x′i, t), (10)

in which Ω represents the operator:

Ω = θR∗θR, (11)

with θ being a Heaviside step function based on the one-
way traveltime from the acquisition surface to the focal point
and Ψ a time window defined by Ψ = 1− θ . The variable
f+0 represents the direct part of the focusing function that
is equal to the inverse direct arrival of the transmission
response. The direct arrival of the transmitted wave can be
obtained by seismic modeling using a smooth velocity field
and applying a modeling method, e.g., finite-difference or
an eikonal solver.

According to Staring et al. (2018), the initial wavefield
G−0 = ΨR f+0 and f+0 contain information of all arrivals and
internal multiple reflections from the overburden, as well
as, the updates of this wavefields, G−1 , G−2 , f+1 , f+2 , etc,
contain only the multiples events, with opposite polarities
and, initially, with incorrect amplitudes that adjust with the
iterations. Since the main information of the multiple events
is present in f+1 and G−1 , we can truncate the series at the
first two terms. When truncating the series of Equations (9)
and (10) and substituting in Equation (8) we have:

G−+(xi,x′i, t) =
∞

∑
i=0

∞

∑
j=0

∫
∂D0

G−i (xi,x0, t)∗ f+j (x0,x′i, t)d
2x0

≈
∫

∂D0

G−0 (xi,x0, t)∗ f+0 (x0,x′i, t)d
2x0

+
∫

∂D0

G−1 (xi,x0, t)∗ f+0 (x0,x′i, t)d
2x0

+
∫

∂D0

G−0 (xi,x0, t)∗ f+1 (x0,x′i, t)d
2x0. (12)

In Equation (12),
∫

∂D0
G−0 (xi,x0, t)∗ f+0 (x0,x′i, t)d

2x0 contains
primary reflections and internal multiple reflections from
the overburden,

∫
∂D0

G−1 (xi,x0, t) ∗ f+0 (x0,x′i, t)d
2x0 and∫

∂D0
G−0 (xi,x0, t) ∗ f+1 (x0,x′i, t)d

2x0 contain the counter-
events of internal multiples reflections from the overburden,
but with incorrect amplitudes. The term G−1 (xi,x0, t) ∗
f+1 (x0,x′i, t) was excluded in Equation (12), as it can
degrade the quality of the data and is responsible only
for multiple events of weaker amplitudes. By using only
these three wavefields in Equation (12), we can apply an
adaptive subtraction to remove the multiple events from
the overburden that is present in G−0 (xi,x0, t) ∗ f+0 (x0,x′i, t),
allowing us to obtain a redatumed data without the effects
of the overburden.

The main advantage of this method is that it does not
require inversion, getting rid of the problem of instability,
especially when using real data. Additionally, this method is
computationally cheap, easy to implement and its algorithm
can be parallelized in pairs of focal points (Staring et al.,
2018), however, some interactions with the overburden will
remain, for example, the internal multiples located between
reflectors below and above the redatuming level.

LSMME vs DF

Both afore-described methods can be used as a pre-
processing flow to improve the quality of an RTM image,
however, there are some differences between their outputs.
Figure 1 shows the difference between the outputs of both
methods. The redatuming sources and receivers to a
level closer to the target area with DFM can eliminate the
multiples generated by the structures above that region.
On the other hand, the LSMME method can eliminate the
internal multiples of all orders, but still keeping the data on
the surface.

When comparing the RTM images produced by migrating
the outputs of these methods, it is expected that the
LSMME image has less noise from the multiple reflections,
since that in the DFM the multiple generated in the target
area will still be present in the data as shown in Figure
1. However, the LSMME scheme needs to be evaluated
for each sample in time which makes the LSMME more
expensive than the DFM which is evaluated only for a
single new datum (Figure 1). In the next section, we give
a numerical example to validate the effectiveness and to
clarify the difference between both schemes.

New 
Datum

Fictitious 
Datum

LSMME

Double-focusing

b

a

Figure 1: llustration of (a) double-focusing and (b) LSMME.
Rays indicate the recorded reflection response before and
after the application of both methods.

Numerical example

To validate this study, we selected a simple numerical
example that allows us to make a clear interpretation of all
events and also analyze the differences, advantages and
disadvantages of both schemes. So, we used a model that
is composed of seven flat-layers (Figure 2). This model
consists of 881× 2001 grid points with a grid spacing of
2.5m. We have computed the synthetic acoustic impulse
reflection responses, for a fixed-spread geometry, with the
finite-difference time-domain modeling code (Thorbecke
and Draganov, 2011), and the input source signature is
approximately a sinc function with a flat spectrum. We
apply absorbing boundaries on all sides, i.e., we assume
that surface-related multiples and ghost wave effects are
removed from the recorded dataset. The direct arrival is
removed from the seismic data by subtracting the simulated
dataset with a homogeneous model (values of the first
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layer). The 501 sources are excited one by one and a
fixed-spread array of 501 receivers with a spacing of 10m
is located at the top of the model. The length of each
shot record is 3.204 s sampled at 4ms. To apply the
LSMME, the synthetic acoustic reflection responses result
from the convolution of R with a Ricker source wavelet with
a central frequency of 20Hz. It is important to add that
the operators R and R∗ are applied by using the impulse
reflection responses. To apply the DFM, the direct wave
of the downgoing focusing function (or direct arrival of the
transmission response) f+0 is estimated from a smooth
velocity model by using a finite-difference solver with a
Ricker source wavelet with a central frequency of 35Hz,
then, after the subtraction, we deconvolve the redatumed
data using the autoconvolution of the source, then we
convolve with a Ricker wavelet with central frequency of
20Hz. Figure 3a shows the central shot (red star in Figure
2) of the single-sided reflection response, where we can
clearly see the internal multiple reflections indicated by the
red arrows.
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Figure 2: Flat-layers model (a) velocity and (b) density
model. The blue dashed line indicates the area for imaging
and the white line show the redatuming level.

The computed single-sided impulse reflection responses
and the central shot (indicated by the red star in Figure
2) are used as inputs for the LSMME technique with
30 iterations. Figure 3b shows the retrieved reflection
response without internal multiples after applying the
LSMME for the central shot gather. Figure 4 gives a
comparison between the traces indicated in Figure 3 by
red and black lines, where we can see that the LSMME
scheme correctly eliminate the events associated with
internal multiple reflections and that the primary reflections
coincide well, preserving the amplitude and phase.
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Figure 3: (a) The modeled reflection response and (b) the
retrieved reflection response by the proposed LSMME.

-1

1

0

0 0.8 1.6 2.4
Time (s)

ORIGINAL
LSMME

Figure 4: The comparison between the zero-offset traces
from panels in Figure 3.

To use the DFM schemes we defined a depth around
1000m as the new datum to redatuming (as indicate the
white line, outlined in Figure 2). After obtaining the
wavefield containing primaries and multiples, G−0 ∗ f+0 , and
the wavefields that contain the internal multiples from
overburden, G−0 ∗ f+1 and G−1 ∗ f+0 , we applied the adaptive
subtraction using a regularized nonstationary regression
(Fomel, 2009). Figure 5b shows the redatumed reflection
response after applying a muting that removes the acausal
amplitudes and the direct wave. The effectiveness of the
DFM method can be confirmed by comparing it with the
modeled reflection response (Figure 5a) without the direct
wave, obtained in a medium that is homogenous above
the redatuming level such that the overburden does not
exist. From this result, we can see that the reflection
response obtained by the adaptive double-focusing method
resembles the modeled reflection response, while still
retaining some higher order multiple events from the
overburden, with a lower amplitude, as indicated by the red
arrows in Figure 5b.

The comparison of LSMME with DFM is made in the image
domain. So, after the application of both schemes in the
dataset, we generated depth images using reverse-time
migration. We used the original dataset, the retrieved
reflection responses by LSMME and the data redatumed
by DFM as inputs to image the target zone (see the blue
rectangle in Figure 2). A comparison between the migrated
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Figure 5: (a) Redatumed reflection response obtained by
modeling in a medium that is homogeneous above the
redatuming level and (b) the result of the adaptive double-
focusing method.

images is shown in Figure 6. The image of the original
dataset in Figure 6a contains artifacts from internal multiple
reflections because they are imaged as if they were primary
reflections (indicated by the red arrows). In Figure 6b,
we see that the RTM image from the DFM dataset is free
internal multiples generated in the overburden as indicated
by the yellow arrow, and some artifacts are indicated by
the red arrows. The image of the retrieved LSMME dataset
shown in Figure 6c is free of all artifacts caused by the
internal multiples.

Both methods were run using 4 nodes configured with 376
GB of RAM (DDR4) memory, 36 Intel(R) Xeon(R) Gold
6240 CPU @ 260GHz. While LSMME took a total of
9.5 hours in the filtering process, the DFM spent about
3 minutes to obtain the redatumed data plus 1 hour to
perform the adaptive subtraction.

Discussions

When we analyze the effects of LSMME in comparison with
the original dataset in Figures 3 and 4, we realize that
this method is efficient in removing multiples of all orders
while preserving primary reflections. The image generated
with the data filtered by the LSMME (Figure 6c) is free of
the false artifacts present in the image generated with the
original data (Figure 6a).

The comparison of the DFM with the reflection response
modeled at the redatuming level (Figure 5) shows that
the DFM scheme is able to reposition the reflectors at
the desired datum. However, in Figure 5b remains some
overburden events of order higher than one (indicated
by the red arrows) that are not present in Figure 5a.
Additionally, there are still some artifacts that could be
removed by a more effective adaptive subtraction method.
Figure 6b shows the depth image obtained by the RTM of
the DFM dataset. This image is now free of the artifact
that is generated by the multiple of the overburden (yellow
arrow) as indicated in the RTM image of the original dataset
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Figure 6: RTM images with (a) complete field data at the
surface, (b) after applying DFM, and (c) after LSMME.

(Figure 6a). However, other artifacts remain (signaled by
the red arrows) which is in accordance with redatumed
data. By comparing the images generated using DFM and
LSMME data as inputs (Figures 6b and 6c, respectively),
we can observe that the LSMME image is absent from all
artifacts caused by multiple internal reflections, while in the
DFM image there are still artifacts caused by some events
of multiple reflections, showing that the LSMME is more
efficient on the removal of internal multiples than DFM.

These results show the advantages and disadvantages of
both these schemes. We can cite as an advantage of
LSMME the fact that it eliminates or attenuates multiple
reflections without using a velocity model or adaptive filter
in a fully automated and data-driven and can provide
a cleaner image. While the DFM has these two pre-
requisites, it runs at a significantly lower computational
cost, and as a redatuming method it can have broader
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applications other than imaging.

Conclusions

In this paper, we compare two strategies to treat
the internal multiple reflections in a simple numerical
example, and analyze their limitations, disadvantages and
advantages of both. The results showed that the double-
focusing method is robust for eliminating the main multiple
events generated for the overburden at a low computational
cost. However, its effectiveness depends on the chosen
adaptive subtraction method. On the other hand, we
saw that the LSMME is more robust than the DFM in
the treatment of internal multiple reflections, being able to
eliminate multiples of all orders present in the dataset. The
great disadvantage of LSMME is its high computational
cost, but this can be mitigated with the use of high-
performance computing. We conclude that if a good
adaptive filter and a correct velocity model are available,
the use of DFM will be enough to eliminate most of the
multiples of the overburden. Therefore, this could provide
an image of high quality in the target area. However, if
computational resources are available and the goal is to
obtain a cleanest possible image, free of all the effects
of internal multiples in the dataset in a fully automated
process, independent of velocity information or adaptive
filter, then LSMME is the more suitable choice.

ACKNOWLEDGMENTS

This work was supported by CENPES/Petrobras through
the Marchenko project at SENAI CIMATEC. The authors
also wish to thank to the developer team of the Open-
Source libraries in TUDelft. A special acknowledgment to
the geophysical team at SENAI CIMATEC for discussions
and contributions.

References

Fomel, S., 2009, Adaptive multiple subtraction using
regularized nonstationary regression: Geophysics, 74,
V25–V33.

Paige, C. and M. Saunders, 1982, Algorithm 583. LSQR:
Sparse linear equations and least squares problems:
ACM Transactions on Mathematical Software, 8, 195–
209.

Santos, R. S., D. E. Revelo, R. C. Pestana, V. Koehne, D. F.
Barrera, and M. S. Souza, 2020a, A least-squares based
approach for the marchenko internal multiple elimination
scheme, in SEG Technical Program Expanded Abstracts
2020, 3184–3188, Society of Exploration Geophysicists.

Santos, R. S., M. S. Souza, D. F. Barrera, D. E. Revelo,
and V. Koehne, 2020b, Fast marchenko multiples
elimination on cmp processing, in SEG Technical
Program Expanded Abstracts 2020, 3189–3193, Society
of Exploration Geophysicists.

Staring, M., R. Pereira, H. Douma, J. van der Neut,
and K. Wapenaar, 2018, Source-receiver marchenko
redatuming on field data using an adaptive double-
focusing method: Geophysics, 83, S579–S590.

Staring, M. and K. Wapenaar, 2020, Three-dimensional
marchenko internal multiple attenuation on narrow
azimuth streamer data of the santos basin, brazil:

Geophysical Prospecting, 68, 1864–1877.
Thorbecke, J. and D. Draganov, 2011, Finite-difference

modeling experiments for seismic interferometry:
Geophysics, 76, H1–H18.

van der Neut, J., J. Thorbecke, K. Mehta, E. Slob, and
K. Wapenaar, 2011, Controlled-source interferometric
redatuming by crosscorrelation and multidimensional
deconvolution in elastic media: Geophysics, 76, SA63–
SA76.

van der Neut, J. and K. Wapenaar, 2016, Adaptive
overburden elimination with the multidimensional
Marchenko equation: Geophysics, 81, T265–T284.

Wapenaar, K., J. Brackenhoff, M. Dukalski, G. Meles, C.
Reinicke, E. Slob, M. Staring, J. Thorbecke, J. van der
Neut, and L. Zhang, 2021, Marchenko redatuming,
imaging and multiple elimination, and their mutual
relations: Geophysics, 86, 1–103.

Zhang, L. and E. Slob, 2019a, A field data example of
Marchenko multiple elimination: Geophysics, 85, 1–39.

——–, 2019b, Free-surface and internal multiple
elimination in one step without adaptive subtraction:
Geophysics, 84, A7–A11.

——–, 2020a, A fast algorithm for multiple elimination
and transmission compensation in primary reflections:
Geophysical Journal International, 221, 371–377.

——–, 2020b, Marchenko multiple elimination of a
laboratory example: Geophysical Journal International,
221, 1138–1144.

Zhang, L. and M. Staring, 2018, Marchenko scheme
based internal multiple reflection elimination in acoustic
wavefield: Journal of Applied Geophysics, 159, 429–
433.

Zhang, L., J. Thorbecke, K. Wapenaar, and E. Slob, 2019,
Transmission compensated primary reflection retrieval
in the data domain and consequences for imaging:
Geophysics, 84, Q27–Q36.

Seventeenth International Congress of the Brazilian Geophysical Society


	Introduction
	The LSMME scheme
	The Adaptive Double-Focusing method
	LSMME vs DF
	Numerical example
	Discussions
	Conclusions
	ACKNOWLEDGMENTS

